main bond lengths, bond and torsion angles are given in Table 2. Fig. 1 represents a general view of molecule (II), with atomic numbering.

The geometry of the molecule in the monoclinic structure (II) does not differ significantly from that in the triclinic form (I): the maximal difference between the corresponding CSCC torsion angles, which fully define molecular conformations in these structures, is equal to 16°. The configuration of the molecule in structure (II) is closer to the ideal mm2 symmetry than in (I): the absolute values of the CSCC torsion angles related by the approximate mirror planes normal to the A macrocycle and passing through the midpoints of its S...S edges (Fig. 1) differ on average by 16°, while in the triclinic form the corresponding average difference is 26° . The S₄ tetragon in structure (II) has a much more planar conformation than in structure (I), the dihedral angles between the S(1) S(2) S(3) and the S(1) S(4)S(3) planes being 15.6 and 27.0° respectively. The observed higher symmetry of the molecule in the monoclinic form (II) may be a consequence of a rather interesting trend of simultaneous increase in molecular and packing symmetry, observed to a different extent in crystals of other phenylenesulfides (Sergeev, Ovchinnikov, Nedel'kin. Astankov. Andrianova, Shklover, Zamaev, Struchkov, 1988): the centre of the S_4 cycle is located in the vicinity of $\frac{1}{4}, \frac{1}{4}, 0$ (its exact coordinates are 0.257, 0.248, 0.043) and the enantiomers of one type form layers in the bc plane (Fig. 2).

According to Kitaigorodsky (1971), an increase in the packing symmetry is accompanied as a rule by a decrease in the density. Nevertheless, crystal (II) has a higher density than crystal (I): 1.408 and 1.368 Mg m⁻³ respectively. This peculiarity of (II) may be caused by its stronger net intermolecular interaction owing to the contribution of the stacking interactions, in which two (C and E) of the four benzene rings of each molecule take part (Fig. 2). The higher energy of the intermolecular interaction is also reflected in the higher (by 32 K) melting point of the monoclinic form (II).

The average values of S—C bond lengths, 1.772 Å, and CSC bond angles, 103.6° , in structure (II) differ only slightly from those in structure (I) (1.777 Å and 104.2° respectively); the deviations of the S atoms from the planes of the benzene rings bonded to them do not exceed 0.12 Å, as compared to 0.14 Å in (I). Thus the steric-strain energies in both conformers (I) and (II) are quite close.

References

- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GERR, R. G., YANOVSKY, A. I. & STRUCHKOV, YU. T. (1983). Kristallografiya, 28, 1029-1030.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KITAIGORODSKY, A. I. (1971). Molecular Crystals, p. 27. Moscow: Nauka.
- OVCHINNIKOV, YU. E., ZAMAEV, I. A., SHKLOVER, V. E., PALYULIN, V. A., STRUCHKOV, YU. T., ASTANKOV, A. V., NEDEL'KIN, V. N. & SERGEEV, V. A. (1989). *Zh. Struct. Khim.* In the press.
- SERGEEV, V. A., OVCHINNIKOV, YU. E., NEDEL'KIN, V. N., ASTANKOV, A. V., ANDRIANOVA, O. B., SHKLOVER, V. E., ZAMAEV, I. A. & STRUCHKOV, YU. T. (1988). *Izv. Akad. Nauk* SSSR Ser. Khim. pp. 1625–1629.
- ZAMAEV, I. A., SHKLOVER, V. E., OVCHINNIKOV, YU. E., STRUCHKOV, YU. T., ASTANKOV, A. V., NEDEL'KIN, V. N. & SERGEEV, V. A. (1989). Acta Cryst. C45, 1531–1534.

Acta Cryst. (1990). C46, 645-648

The Structure of T-2 Toxin

BY RICHARD GILARDI, CLIFFORD GEORGE AND JUDITH L. FLIPPEN-ANDERSON

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA

(Received 3 April 1989; accepted 6 June 1989)

Abstract. T-2 toxin, 12,13-epoxytrichothec-9-ene-3,4,8,15-tetraol 4,15-diacetate 8-(3-methylbutanoate), $C_{24}H_{34}O_9$, $M_r = 466.53$, orthorhombic, $P2_12_12_1$, a =7.808 (2), b = 15.800 (4), c = 40.891 (9) Å, V =5044 (2) Å³, Z = 8, $D_x = 1.228$ Mg m⁻³, λ (Cu $K\alpha$) = 1.54178 Å, $\mu = 0.74$ mm⁻¹, F(000) = 2000, T =295 K, final R = 0.055, wR = 0.063 for 3434 independent observed reflections. The chemically established

structural formula was corroborated. The two molecules in the asymmetric unit differ only in the torsion angles of the ester side chains.

Introduction. T-2 toxin, produced by a mold growing on stored corn, was the first trichothecene to be implicated in animal-feed toxicosis in 1971; since then more than a score have been found which are

0108-2701/90/040645-04\$03.00

© 1990 International Union of Crystallography

toxic. Trichothecene mycotoxins produce a variety of potent biological effects which damage all types of living cells. They are produced by grain molds and soil fungi (primarily Fusaria, Myrothecia and Trichothecia species) and may have a natural antimicrobial or phytotoxic role. However, they can damage the health of animals whether ingested, inhaled or topically applied and are thus a public health problem.

The structure of this molecule was determined to aid in the study of the structure-activity relationships in the trichothecene family. Detailed studies are complicated by the existence of a plethora of effects (interference with protein synthesis and DNA replication in vitro, local inflammation, internal 06A 07A 08A hemorrhaging, and immunosuppressive disease in vivo). Many separate assays of toxicity have been published (Ueno, 1983) using different hosts and measures of damage; although the differences in toxicity of the various trichothecenes range from C6A C7A C8A slight to major in these tests the rank is generally the same. Macrocyclic trichothecenes, so called because a large ring links carbon atoms C4 and C6, are the most toxic. Next most toxic are the non-macrocyclic members which have bulky ester side chains such as T-2 toxin. However, unsubstituted trichothecenes which contain 12.13-epoxy and 9-ene substitution still retain appreciable toxicity.

Experimental. A clear colorless $0.10 \times 0.15 \times$ 0.62 mm data crystal was provided by S. Missler of the US Army Medical Research Institute for Infectious Diseases. An automated Nicolet R3m diffractometer with incident-beam monochromator used 25 centered reflections within $30 \le 2\theta \le 53^\circ$ for determining lattice parameters. $[\sin(\theta)/\lambda]_{\text{max}} = 0.56 \text{ Å}^{-1}$, range of *hkl*: $0 \le h \le 8$, $0 \le k \le 17$, $0 \le l \le 15$ 45. Standards 200, 040, 006, monitored every 60 reflections with a random variation of 2.5% over data collection, $\theta/2\theta$ mode, scan width $[2\theta(K\alpha_1) -$ 1.0] to $[2\theta(K\alpha_2) + 1.0]^\circ$, scan rate a function of count rate $(4.0^{\circ} \text{min}^{-1} \text{minimum}, 29^{\circ} \text{min}^{-1} \text{maximum})$, 4528 reflections measured, 4267 unique, $R_{int} =$ 0.0045, 3434 observed with $F_o > 3\sigma(F_o)$. Data correc-

Table 1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$)

	r	v	7	U
01	951 (4)	6919 (2)	9056 (1)	56 (1)
02	1522 (4)	7911 (2)	9858 (1)	65 (1)
O3	2440 (4)	9835 (2)	8755 (Ì)	78 (1)
04	1487 (7)	10415 (3)	8297 (1)	131 (2)
05	- 1484 (4)	9101 (2)	9564 (1)	68 (1)
06	- 3131 (6)	9814 (2)	9217 (1)	122 (2)
0/	- 2544 (4)	1376 (2) 8677 (2)	9148 (1)	67 (I) 85 (I)
00	4639 (4)	8377 (A)	8349 (1)	171 (3)
C2	409 (6)	7173 (3)	9372 (1)	55 (2)
C3	- 1285 (6)	7657 (3)	9370 (1)	55 (2)
C4	- 813 (6)	8578 (3)	9299 (1)	56 (2)
C5	1188 (5)	8611 (3)	9298 (1)	51 (Ì)
C6	1836 (5)	8402 (3)	8941 (1)	47 (1)
C7	3796 (6)	8238 (3)	8934 (1)	58 (2)
0	4506 (6)	7931 (3)	8612(1)	68 (2) 72 (2)
	1803 (6)	7349 (3)	8522 (1)	67 (2)
CII	956 (6)	7588 (3)	8813 (1)	51 (1)
CI2	1586 (6)	7829 (3)	9504 (1)	50 (1)
C13	3120 (6)	7664 (3)	9698 (1)	66 (2)
C14	1916 (6)	9434 (3)	9438 (1)	65 (2)
C15	1356 (6)	9101 (3)	8693 (1)	61 (2)
C16	4212 (9)	6880 (4)	8141 (1)	109 (3)
C17	2399 (7)	10441 (3)	8529 (1)	86 (2)
C10	- 2677 (6)	9680 (3)	0018 (2) 0404 (1)	74 (2)
C20	-3334(7)	10113 (4)	9787 (1)	100 (3)
C21	6431 (7)	8836 (5)	8307 (1)	113 (3)
C22 ·	6622 (10)	9662 (4)	8113 (1)	128 (3)
C23	6365 (16)	9611 (6)	7791 (2)	258 (8)
C24	6722 (16)	10391 (8)	7603 (2)	344 (10)
C25	4764 (18)	9219 (9)	7670 (3)	487 (15)
014	5/54 (4)	5802 (2)	8993 (1)	65 (1)
024	2229 (4)	4630 (2)	9370(1)	87 (1) 73 (1)
04A	10547 (5)	2570 (2)	8921 (1)	98 (2)
O5A	5538 (4)	4088 (2)	9848 (1)	70 (1)
O6A	8012 (6)	3401 (3)	9888 (1)	163 (2)
07 <i>A</i>	6924 (5)	5994 (2)	9629 (1)	76 (1)
08 <i>A</i>	8101 (5)	3619 (2)	8257 (1)	87 (1)
094	6202 (7)	2795 (3)	8014 (1)	172 (3)
C2A C34	4021 (0)	5430 (3)	9234 (1)	63 (2) 64 (2)
C4A	6110 (6)	4511 (3)	9556 (1)	55 (2)
C5A	5251 (6)	4140 (3)	9242 (1)	58 (2)
C6A	6536 (5)	4271 (3)	8945 (1)	51 (I)
C7A	5684 (6)	4078 (3)	8611 (1)	69 (2)
C8A	6794 (7)	4270 (3)	8318 (1)	77 (2)
CIA CIA	7/81 (7)	5076 (3)	8347 (1)	76 (2) 70 (2)
CILA	7128 (6)	5205 (3)	8941 (1)	70 (2) 57 (2)
C12A	3795 (6)	4771 (3)	9192 (1)	64 (2)
C13A	2187 (6)	4641 (3)	9023 (1)	85 (2)
C14A	4619 (7)	3223 (3)	9283 (1)	73 (2)
C15A	8165 (6)	3741 (3)	8985 (1)	57 (2)
CI6A	8576 (10)	5388 (4)	8032 (1)	118 (3)
C17A C18A	9114 (/) 8537 (8)	2549 (5)	8847 (2)	11 (2)
C19A	6633 (8)	3537 (3)	9992 (1)	90 (2)
C20A	5862 (10)	3158 (4)	10288 (1)	119 (3)
C21A	7670 (10)	2920 (4)	8088 (1)	112 (3)
C22A	9185 (11)	2394 (4)	8010 (2)	121 (3)
C23A	10236 (10)	2699 (5)	7738 (2)	141 (4)
C24A	11/60 (13)	2149 (6)	7669 (2)	185 (5)
C23A	7320 (13)	2730 (9)	1429 (2)	3U8 (9)

Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{μ} tensor.

ted for Lorentz and polarization, but not absorption effects. Structure solved by trial of 1000 random phase set assignments followed by tangent-formula expansion of phase sets and assessment by NOEST criterion (SHELXTL; Sheldrick, 1980). The leastsquares refinement also used program SHELXTL. $\sum w(|F_o| - |F_c|)^2$ minimized where $w = 1/[\sigma^2(|F_o|) + gF_o^2]$, g = 0.0006. Secondary-extinction parameter p = 0.0008 (1) in $F_c^* = F_c/[1.0 + 0.002pF_o^2/\sin(2\theta)]^{0.25}$. 638 parameters were refined: atom coordinates, anisotropic thermal parameters for all non-H atoms, atom coordinates for hydroxyl H atoms, other H atoms included using riding model in *SHELXTL*, H riding on C, C—H = 0.96 Å, $U(H) = 1.1 U_{eq}(C)$ (methylenes, methines), $U(H) = 1.2 U_{eq}(C)$ (methyls, hydroxyls). $(\Delta/\sigma)_{max} = 0.7$ (methyl rotations), R = 0.055, wR = 0.062, S = 1.54. Final difference Fourier excursions 0.21 and -0.23 e Å⁻³. Atomic scattering factors from *International Tables for X-ray Crystallography* (1974).[†]

Discussion. Table 1 lists the coordinates and U_{eq} for the two T-2 toxin molecules in the asymmetric unit and atom numbering follows that given in Fig. 1; molecule A, not displayed, is numbered similarly. The chirality shown in the figure was chosen to conform to the absolute configuration of verrucarin A (McPhail & Sim, 1966). The primary difference between the molecules in the asymmetric unit is the respective orientation of the methylbutanoate group; torsions C7-C8-O8-C21 and C21-C22-C23-C25 are 118.0 and 52.4° (83.4 and -61.8° for molecule A). The methyls of this side chain have large thermal parameters for C23, C24, C25, and to a lesser extent C25A, which indicate the presence of a disorder; however, it was not resolvable as a discrete disorder. Bond lengths and angles are listed in Table 2.

In T-2 toxin the hydroxyl at C3 is *endo* with respect to the ring system and *trans* to both the acetate at C4 and the methyl at C5. The bond distances, bond angles, and torsion angles of the trichothecene moiety are very similar to those found

† Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52312 (34 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Thermal-ellipsoid plot of T-2 toxin with ellipsoids drawn at the 20% probability level. The second molecule in the asymmetric unit is very similar and is not shown.

Table 2. Bond lengths (Å) and bond angles (°)

2-01	1.417 (5)	C2-C3	1.527 (6)
C2-C12	1.486 (6)	C3-07	1.409 (5)
~3—C4	1.530 (6)	C405	1.461 (5)
74 C5	1.564 (6)	C5 C4	1 579 (5)
-4-03	1.304 (0)	0,000	1.378 (3)
_>C12	1.528 (6)	C5-C14	1-530 (6)
C6—C7	1.552 (6)	C6-C11	1.549 (6)
~~~C15	1.546 (6)	C7C8	1.507 (6)
	1 470 (6)		1 471 (7)
_8-08	1.4/9 (6)	C8-C9	1.4/1 (/)
C9—C10	1.317 (7)	C9—C16	1.534 (7)
C10—C11	1.494 (6)	CII-01	1.450 (5)
<u></u>	1.458 (4)	C12_C13	1.461 (6)
_12_02	1.436 (4)	C12-C13	1.401 (0)
213-02	1.462 (6)	C15—O3	1.459 (5)
C17—O3	1.330 (6)	C17—O4	1.186 (7)
C17_C18	1.485 (8)	C19-05	1.337 (5)
	1 405 (0)		1 337 (3)
_19—06	1.204 (6)	C19-C20	1.4/4 (7)
C21—O8	1.327 (7)	C21O9	1.214 (8)
~21	1.535 (9)	C22_C23	1.336 (9)
21 022	1 480 (0)	C22 C25	1 491 (0)
	1.400 (9)	C25-C25	1.401 (9)
$C2A \rightarrow O1A$	1.422 (5)	C2A—C3A	1.519 (6)
C2A - C12A	1.484 (7)	C3A-07A	1.422 (6)
34-044	1.523 (6)	C44-054	1.440 (5)
	1.525 (0)	C4A-03A	1.440 (3)
AA-CSA	1.562 (6)	C5A-C12A	1.526 (6)
C5A-C14A	1.539 (6)	C6A—C7A	1.549 (6)
~6AC11A	1.547 (6)	C64-C154	1.531 (6)
	1 547 (0)	C04 C154	
_/A-C8A	1.211 (0)	C8A - O8A	1.4/1 (0)
C8A—C9A	1·493 (7)	C9A-C10A	1.320 (7)
C9A-C16A	1.514 (8)	C10A-C11A	1.480 (6)
	1,444 (5)		1.480 (4)
	1 444 (3)		1 400 (0)
.12A—O2A	1.454 (6)	C12A—C13A	1·448 (7)
C13A—O2A	1-446 (6)	C15A-O3A	1.443 (5)
174-034	1.338 (6)	C174-044	1.174 (7)
	1 556 (0)	010 : 01	1 1 / 4 ( / )
.17A—C18A	1-510 (7)	C19A-05A	1.357 (6)
C19A-06A	1.178 (7)	C19A-C20A	1.476 (8)
214-084	1.345 (7)	$C_{21} = 0.094$	1.201 (9)
	1 400 (0)	C21/4 07/4	1 201 (7)
_21A-C22A	1.480 (9)	$C22A \rightarrow C23A$	1.403 (9)
C23A—C24A	1.500 (2)	C23A—C25A	1.452 (2)
<u>~</u>	114.7 (3)	C12_02_C13	60.1 (3)
	1147 (3)	02-02-013	001(3)
215-03-C17	116-0 (4)	C4	118-5 (3)
C8-08-C21	119.1 (4)	O1-C2-C3	113.3 (3)
	110-1 (3)	<u>C3-C2-C12</u>	100.9 (3)
	110 1 (3)		110 1 (3)
J/-CJ-C2	110.7 (3)	0/-13-14	110-1 (3)
C2—C3—C4	105-6 (3)	O5-C4-C3	108-1 (3)
D5C4C5	109.9 (3)	C3-C4-C5	105.9 (3)
74	108.4 (3)	C4-C5-C12	100.1 (3)
	100 4 (3)		100-1 (3)
.6-05-012	105.9 (3)	C4C5C14	113.5 (3)
C6-C5-C14	113-9 (3)	C12-C5-C14	113.9 (3)
~s	111.6 (3)	C5-C6-C11	110-1 (3)
	107.0 (2)		110 2 (3)
2/	107.0 (3)	0-0-015	112.3 (3)
C7—C6—C15	110-3 (3)	C11—C6—C15	105-3 (3)
C6—C7—C8	115.6 (3)	O8-C8-C7	108-3 (4)
00	107.0 (3)	C7_C8_C9	115.2 (4)
	107 9 (3)	0,00,00	1152 (4)
28C9C10	121.6 (4)	C8-C9-C16	116-5 (5)
C10—C9—C16	121.8 (5)	C9-C10-C11	124.9 (4)
11-01-06	112.1 (3)		104-3 (3)
	114.4 (4)		112.7 (2)
	114.4 (4)	02-012-02	113-7 (3)
J2-C12-C5	118-0 (3)	C2-C12-C5	103-8 (3)
D2-C12-C13	60-1 (2)	C2-C12-C13	125.5 (4)
-5-C12-C13	127.7 (4)	02-013-012	59.8 (2)
	108 2 (2)	01 017 04	100 (0)
J3-CI3-C0	108.3 (3)	03-01/-04	122.9 (5)
JJ-CI7-CI8	110-8 (5)	O4C17C18	126-2 (5)
D5C19O6	121.8 (4)	O5-C19-C20	112.7 (4)
	125.5 (5)	08-021-09	121.5 (4)
	1120(5)		121.2 (0)
Jo-UZI-UZZ	113.9 (3)	09-021-022	124.3 (6)
C21—C22—C23	116-3 (6)	C22—C23—C24	115-8 (5)
C22-C23-C25	118-8 (6)	C24-C23-C25	109-5 (6)
	115.4 (2)	C124_024_C124	50.0 (2)
	113.4 (3)		39.6(2)
_15 <i>A</i> —03 <i>A</i> —C17A	115-0 (3)	C4A—O5A—C19A	117.7 (4)
C8A-08A-C21A	119-2 (4)	O1A-C2A-C3A	113-4 (4)
$14 - C_{24} - C_{124}$	109.8 (3)	C34-C24-C124	101.2 (4)
$\mathcal{O}_{\mathcal{A}} \mathcal{O}_{\mathcal{A}} \mathcal{O}_{\mathcal{A}} \mathcal{O}_{\mathcal{A}} \mathcal{O}_{\mathcal{A}}$	113.4 (4)		112 2 (4)
JIA-CJA-CZA	112.4 (4)	UIA-CSA-C4A	112.3 (4)
C3 <i>A</i> —C4A	105-3 (3)	U5A-C4A-C3A	107-9 (3)
D5A-C4A-C5A	111.9 (3)	C3A-C4A-C5A	105-9 (3)
~44-C54-C64	107.8 (3)	C44-C54-C124	100.6 (2)
	107.6 (3)		100.0 (3)
LOA-COA-CIZA	106-5 (3)	C4A-C5A-C14A	113•7 (4)
C6A—C5A—C14A	114-1 (4)	C12A-C5A-C14A	113-0 (4)
5A-C6A-C7A	112.1 (3)	C54-C64-C114	108-9 (3)
	107 7 (2)		1110 (3)
JA-COA-CIIA	107-7 (3)	CJA-COA-CIJA	111-9 (3)
С7А—С6А—С15А	110-0 (3)	C11A-C6A-C15A	106-0 (3)
C6A-C7A-C8A	114.5 (4)	O8A-C8A-C7A	113.2 (4)
784-084-04	104-6 (4)	C74-C84-C94	113.8 (4)
	104.0 (4)	C1A-C0A-C3A	113.0 (4)
.8A-C9A-C10A	121-4 (4)	C8A—C9A—C16A	114-9 (4)
C10A-C9A-C16A	123-6 (5)	C9A-C10A-C11A	125-4 (5)
D1A - C11A - C6A	113-5 (3)	014-C114-C104	104.4 (3)
	114.2 (4)		114.2 (4)
LUA-CITA-CIUA	114.3 (4)	UZA - CIZA - CZA	114-3 (4)
114 C114 C64			
JZA = CIZA = CJA	117.3 (4)	C2A—C12A—C5A	103-4 (4)
D2A - C12A - C3A D2A - C12A - C13A	117·3 (4) 59·8 (3)	C2A—C12A—C5A C2A—C12A—C13A	103·4 (4) 125·7 (4)

bonding in which O7 acts as a donor to both O1A (x

strain one nitro group to be coplanar with the phenyl ring. The molecules form a hydrogen-bonded chain along the *a* axis.

Introduction. The crystal structure of the title compound was determined as part of an ongoing study of structure-reactivity relationships in polynitroaromatic compounds. Such compounds find application

Abstract. C₉H₈N₄O₈,  $M_r = 300.21$ , monoclinic, P2₁, a = 4.978 (2), b = 6.974 (2), c = 17.991 (6) Å,  $\beta =$ 

94.69 (3)°, V = 622.7 (3) Å³, Z = 2,  $D_x = 1.60 \text{ Mg m}^{-3}$ ,  $\lambda(\text{Mo } K\alpha) = 0.71073 \text{ Å}$ ,  $\mu = 0.134 \text{ mm}^{-1}$ , F(000) = 308, T = 225 K, final R = 1.0226 for 760 independent reflections.

0.058, wR = 0.063 for 769 independent reflections.

This trinitroaromatic compound forms an inter-

*molecular* hydrogen bond rather than a possible intramolecular hydrogen bond which would con-

0108-2701/90/040648-03\$03.00

tively. No other contacts less than van der Waals distances occur.

This work was supported in part by USAMRIID contract No. 85MM5511 and the Office of Naval Research.

#### References

- FLIPPEN-ANDERSON, J. L. & GILARDI, R. (1986). Acta Cryst. C42, 1184-1185.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JARVIS, B. B., CÖMEZOĞLU, F. T., LEE, Y. M., FLIPPEN-ANDERSON, J. L., GILARDI, R. D. & GEORGE, C. (1986). Bull. Soc. Chim. Belg. 95, 681-697.
- MCPHAIL, A. T. & SIM, G. A. (1966). J. Chem. Soc. C, pp. 1394-1396.
- SHELDRICK, G. M. (1980). SHELXTL80. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
- UENO, Y. (1983). Editor. Trichothecenes: Chemical, Biological and Toxicological Aspects. Tokyo: Kodansha Press.

Acta Cryst. (1990). C46, 648-650

## Structure of Ethyl (2,4,6-Trinitrophenyl)carbamate

## BY DOUGLAS DUDIS

Chemistry Department, US Naval Academy, Annapolis, MD 21402, USA

## AND RICHARD GILARDI*

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington DC 20375, USA

(Received 17 August 1988; accepted 31 July 1989)

as propellants and explosives. A combination of quantum-mechanical (INDO) calculations and structural parameters (C-NO₂ distances) has been used (Delpuech & Cherville, 1979) to correlate sensitivity of explosives. Hence, structural data are needed to test the validity of this and other structure-reactivity correlations.

**Experimental.** A clear, colorless  $0.03 \times 0.22 \times$ 0.48 mm data crystal from material supplied by Dr Paul Bolduc, Eglin Air Force Base. Automated Nicolet R3m diffractometer with incident beam monochromator. 25 centered reflections within  $21 \leq$  $2\theta \le 30^\circ$  used for determining lattice parameters.  $[\sin(\theta)/\lambda]_{\text{max}} = 0.54 \text{ Å}^{-1}$ , range of hkl:  $0 \le h \le 5, -7$  $\leq k \leq 0, -19 \leq l \leq 19$ . Standards  $\overline{110}, \overline{130}, 006$ monitored every 100 reflections showed no decrease in intensity.  $\theta$ -2 $\theta$  mode,  $\theta$  scan width 0.9°,  $\theta$  scan rate a function of count rate, 3° min⁻¹ minimum, 15°

© 1990 International Union of Crystallography

1	able	20	(coni	!.)
---	------	----	-------	-----

C5A-C12A-C13A	128.1 (4)	02A—C13A—C12A	60-3 (3)
O3A-C15A-C6A	108.9 (3)	O3A-C17A-O4A	124.6 (4)
O3A-C17A-C18A	110-3 (5)	O4A-C17A-C18A	125-1 (5)
O5A-C19A-O6A	122.2 (5)	O5A-C19A-C20A	111-1 (5)
O6A-C19A-C20A	126-7 (6)	08A-C21A-O9A	120.2 (6)
O8A-C21A-C22A	111.8 (6)	09A-C21A-C22A	128-0 (6)
C21A-C22A-C23A	115-3 (6)	C22A-C23A-C24A	113-4 (7)
C22A-C23A-C25A	113-5 (8)	C24A-C23A-C25A	104-1 (7)

in other mycotoxins: isororidin E (Flippen-Anderson

& Gilardi, 1986), mycotoxin A and B, (Jarvis,

Cömezoğlu, Lee, Flippen-Anderson, Gilardi &

George, 1986) and verrucarin A (McPhail & Sim,

1966). The major feature of the packing is the

presence of three-centered intermolecular hydrogen

-1, y, z) and O7A (x -1, y, z). Hydrogen bonding

also occurs when O7A acts as a donor to O2 (x +

0.5, 1.5 - y, 2 - z). The respective hydrogen bond

parameters for H···O, O···O, and  $\angle O$ —H···O are

2·30 (4), 2·20 (4), 1·88 (4) Å; 2·97 (1), 2·89 (1),

2.74 (1) Å; and 134 (3), 136 (3) and 159 (3)° respec-

^{*} To whom all correspondence should be addressed.